Short unsegmented PCG classification based on ensemble classifier
نویسندگان
چکیده
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملRough set Based Ensemble Classifier forWeb Page Classification
Combining the results of a number of individually trained classification systems to obtain a more accurate classifier is a widely used technique in pattern recognition. In this article, we have introduced a rough set based meta classifier to classify web pages. The proposed method consists of two parts. In the first part, the output of every individual classifier is considered for constructing ...
متن کاملWeighted classifier ensemble based on quadratic form
Diversity and accuracy are the two key factors that decide the ensemble generalization error. Constructing a good ensemble method by balancing these two factors is difficult, because increasing diversity is at the cost of reducing accuracy normally. In order to improve the performance of an ensemble while avoiding the difficulty derived of balancing diversity and accuracy, we propose a novel me...
متن کاملEnsemble Classifier for Benign-Malignant Mass Classification
Mammography is currently the most effective imaging modality for early detection of breast cancer. In a CAD system for masses based on mammography, a mammogram is segmented to detect the masses. The segmentation gives rise to mass regions of interested (ROIs), which are either benign or malignant. There is a need to classify the extracted mass ROIs into benign and malignant masses; it is a hard...
متن کاملClassifier Ensemble for Uncertain Data Stream Classification
Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
سال: 2020
ISSN: 1303-6203
DOI: 10.3906/elk-1905-165